Certleader 2018 New 300-135 Exam Dumps (PDF & VCE) Download: https://www.certleader.com/300-135-dumps.html

Assistance and after-sales support for each of the customers For the introduction of Cisco Cisco exam, please click live chat. With regard to access for the downloadable materials, please contact our workers via email. For acquire or payment questions, please contact sales team. With regard to frequently asked questions, please seek support from FAQs on Exambible.com. With regard to difficult difficulties, please contact your online support for quick answers.

2017 Mar 300-135 question

Q21. - (Topic 21) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1. After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

Use the supported commands to isolate the cause of this fault and answer the following question.

What is the solution to the fault condition?

A. Under the interface Tunnel34 configuration delete the tunnel mode ipv6 command.

B. Under the interface Serial0/0/0.34 configuration enter the ipv6 address 2026::34:1/122 command.

C. Under the interface Tunnel34 configuration enter the ip address unnumbered Serial0/0/0.34 command.

D. Under the interface Tunnel34 configuration delete the tunnel source Serial0/0/0.34 command and enter the tunnel source 2026::34:1/122 command.

Answer: A

Explanation:

As explained earlier, the problem is with route misconfigured tunnel modes on R3. R3 is using tunnel mode ipv6, while R4 is using the default of GRE. We need to remove the "tunnel mode ipv6" command under interface Tunnel34


Q22. - (Topic 1)

Which IPsec mode will encrypt a GRE tunnel to provide multiprotocol support and reduced overhead?

A. 3DES

B. multipoint GRE

C. tunnel

D. transport

Answer: D


Q23. - (Topic 14) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. NTP 

B. IP DHCP Server 

C. IPv4 OSPF Routing 

D. IPv4 EIGRP Routing 

E. IPv4 Route Redistribution 

F. IPv6 RIP Routing 

G. IPv6 OSPF Routing 

H. IPv4 and IPv6 Interoperability 

I. IPv4 layer 3 security 

Answer:

Explanation: 

On R4, IPV4 EIGRP Routing, need to change the EIGRP AS number from 1 to 10 since DSW1 & DSW2 is configured to be in EIGRP AS number 10. 

Topic 15, Ticket 10 : VLAN Access Map 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Client 1 is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

ipconfig ----- Client will be receiving IP address 10.2.1.3 

. From Client PC we can ping 10.2.1.254…. 

. But IP 10.2.1.3 is not able to ping from R4, R3, R2, R1 

. Change required: On DSW1, VALN ACL, Need to delete the VLAN access-map test1 whose action is to drop access-list 10; specifically 10.2.1.3 


Q24. - (Topic 2) 

A customer network engineer has made configuration changes that have resulted in some loss of connectivity. You have been called in to evaluate a switch network and suggest resolutions to the problems. 

Refer to the topology. 

SW1 Switch Management IP address is not pingable from SW4. What could be the issue? 

A. Management VLAN not allowed in the trunk links between SW1 and SW4 

B. Management VLAN not allowed in the trunk links between SW1 and SW2 

C. Management VLAN not allowed in the trunk link between SW2 and SW4 

D. Management VLAN ip address on SW4 is configured in wrong subnet 

E. Management VLAN interface is shutdown on SW4 

Answer:

Explanation: 

In the network, VLAN 300 is called the Management VLAN. Based on the configurations shown below, SW1 has VLAN 300 configured with the IP address of 192.168.10.1/24, while on SW4 VLAN 300 has an IP address of 192.168.100.4/24, which is not in the same subnet. 


Q25. - (Topic 20) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1.

After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

The fault condition is related to which technology?

A. NTP

B. IP DHCP Server

C. IPv4 OSPF Routing

D. IPv4 EIGRP Routing

E. IPv4 Route Redistribution

F. IPv6 RIP Routing

G. IPv6 OSPF Routing

H. IPV4 and IPV6 Interoperability

I. IPv4 layer 3 security

Answer: G

Explanation:

As explained earlier, the problem is with route redistribution on R4 of not redistributing RIP routes into OSPF for IPV6.


Renovate 300-135 rapidshare:

Q26. - (Topic 4) 

Scenario: 

You have been asked by your customer to help resolve issues in their routed network. Their network engineer has deployed HSRP. On closer inspection HSRP doesn't appear to be operating properly and it appears there are other network problems as well. You are to provide solutions to all the network problems. 

The following debug messages are noticed for HSRP group 2. But still neither R1 nor R2 has identified one of them as standby router. Identify the reason causing the issue. 

Note: only show commands can be used to troubleshoot the ticket. 

R1# 

'Mar 26 11:17:39.234: HSRP: Et1/0 Grp 2 Hello out 172.16.20.2 Active pri 100 vIP 

172.16.20.254 

'Mar 26 11:17:40.034: HSRP: EtO/0 Grp 1 Hello out 172.16.10.2 Active prj 130 vIP 

172.16.10.254 

R1# 

'Mar 26 11:17:40.364: HSRP: EtO/0 Grp 1 Hello in 172.16.10.1 Standby pri 100 vIP 

172.16.10.254 

R1# 

'Mar 26 11:17:41.969: HSRP: Et1/0 Grp 2 Hello out 172.16.20.2 Active pri 100 vIP 172.16.20.254 

'Mar 26 11:17:42.719: HSRP: EtO/0 Grp 1 Hello out 172.16.10.2 Active prj 130 vIP 

172.16.10.254 

'Mar 26 11:17:42.918: HSRP: EtO/0 Grp 1 Hello in 172.16.10.1 Standby pri 100 vIP 

172.16.10.254 

R1# 

'Mar 26 11:17:44.869: HSRP: Et1/0 Grp 2 Hello out 172.16.20.2 Active pri 100 vIP 

172.16.20.254 

'Mar 26 11:17:45.485: HSRP: EtO/0 Grp 1 Hello out 172.16.10.2 Active prj 130 vIP 

172.16.10.254 

'Mar 26 11:17:45.718: HSRP: EtO/0 Grp 1 Hello in 172.16.10.1 Standby pri 100 vIP 

172.16.10.254 

R1# 

'Mar 26 11:17:47.439: HSRP: Et1/0 Grp 2 Hello out 172.16.20.2 Active pri 100 vIP 

172.16.20.254 

'Mar 26 11:17:48.252: HSRP: EtO/0 Grp 1 Hello in 172.16.10.1 Standby pri 100 vIP 

172.16.10.254 

'Mar 26 11:17:48.322: HSRP: EtO/0 Grp 1 Hello out 172.16.10.2 Active prj 130 vIP 

172.16.10.254 

R1# 

'Mar 26 11:17:50.389: HSRP: Et1/0 Grp 2 Hello out 172.16.20.2 Active pri 100 vIP 

172.16.20.254 

'Mar 26 11:17:50.735: HSRP: EtO/0 Grp 1 Hello in 172.16.10.1 Standby pri 100 vIP 

172.16.10.254 

'Mar 26 11:17:50.921: HSRP: EtO/0 Grp 1 Hello out 172.16.10.2 Active prj 130 vIP 

172.16.10.254 

R1# 

'Mar 26 11:17:53.089: HSRP: Et1/0 Grp2 Hello out 172.16.20.2 Active pri 100 vIP 

172.16.20.254 

'Mar 26 11:17:53.338: HSRP: EtO/0 Grp 1 Hello out 172.16.10.2 Active pri130vlP 

172.16.10.254 

'Mar 26 11:17:53.633: HSRP: EtO/0 Grp 1 Hello in 172.16.10.1 Standby pri 100 vIP 

172.16.10.254 

A. HSRP group priority misconfiguration 

B. There is an HSRP authentication misconfiguration 

C. There is an HSRP group number mismatch 

D. This is not an HSRP issue: this is DHCP issue. 

E. The ACL applied to interface is blocking HSRP hello packet exchange 

Answer:

Explanation: 

On R1 we see that access list 102 has been applied to the Ethernet 1/0 interface: 

This access list is blocking all traffic to the 224.0.0.102 IP address, which is the multicast address used by HSRP. 

Topic 5, Troubleshooting OSPF 

17. - (Topic 5) 

Scenario: 

A customer network engineer has edited their OSPF network configuration and now your customer is experiencing network issues. They have contacted you to resolve the issues and return the network to full functionality. 

Connectivity from R3 to R4, R5 and R6 has been lost. How should connectivity be reestablished? 

A. Configure R4 with a virtual link to 192.168.13.2 

B. Change the R3 and R4 hello-interval and retransmit-interface timers to zero so the link won't go down. 

C. Add an OSPF network statement for 4.4.4.4 0.0.0.0 area 1 in R3 

D. Add an OSPF network statement for 192.168.34.3 0.0.0.255 area 2 in R3 

E. Add an OSPF network statement for 192.168.34.0 0.0.0.255 area 1 in R3 

Answer:

Explanation: 

Based on the network diagram, we know that a virtual link will need to be configured to logically connect area 2 to the back area 0. However, this is not the problem as we can see that R3 has been correctly configured to do this. It is, however, missing the network statement for the link to R4. Here, we see that the link to R4 is using the 192.168.34.0 network, but that this network has not been added to OSPF 

Based on the network diagram, this link should be added to Area 1, not Area 2. 


Q27. - (Topic 13) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, 

NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. NTP 

B. IP DHCP Server 

C. IPv4 OSPF Routing 

D. IPv4 EIGRP Routing 

E. IPv4 Route Redistribution 

F. IPv6 RIP Routing 

G. IPv6 OSPF Routing 

H. IPv4 and IPv6 Interoperability 

I. IPv4 layer 3 security 

Answer:

Explanation: 

On R4, in the redistribution of EIGRP routing protocol, we need to change name of route-map to resolve the issue. It references route-map OSPF_to_EIGRP but the actual route map is called OSPF->EIGRP. 


Q28. - (Topic 19) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1. After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

Use the supported commands to isolate the cause of this fault and answer the following question.

The fault condition is related to which technology?

A. NTP

B. IPv4 OSPF Routing

C. IPv6 OSPF Routing

D. IPv4 layer 3 security

Answer: C

Explanation:

Since we are unable to ping the IPv6 address, the problem is with IPv6 OSPF Routing.


Q29. - (Topic 16) 

The implementations group has been using the test bed to do a ‘proof-of-concept'. After several changes to the network addressing, routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2(2026::102:1). 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

R2 is missing the needed IPV6 OSPF for interface s0/0/0.23 

Topic 17, Ticket 12 : HSRP Issue 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the 

devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Solution 

Steps need to follow as below:-

. Since the problem is raised that DSW1 will not become active router for HSRP group 10 

. we will check for the HSRP configuration… 

. From snapshot we see that the track command given needs to be changed under active VLAN10 router 

. Change Required: On DSW1, related to HSRP, under vlan 10 change the given track 1 command to instead use the track 10 command. 


Q30. - (Topic 6) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, and FHRP services, a trouble ticket has been operated indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to Isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

Since the Clients are getting an APIPA we know that DHCP is not working. However, upon closer examination of the ASW1 configuration we can see that the problem is not with DHCP, but the fact that the trunks on the port channels are only allowing VLANs 1-9, when the clients belong to VLAN 10. VLAN 10 is not traversing the trunk on ASW1, so the problem is with the trunk configuration on ASW1. 



To know more about the 300-135 dumps download, click here.